Mutation of I696 and W697 in the TRP box of vanilloid receptor subtype I modulates allosteric channel activation
نویسندگان
چکیده
The transient receptor potential vanilloid receptor subtype I (TRPV1) channel acts as a polymodal sensory receptor gated by chemical and physical stimuli. Like other TRP channels, TRPV1 contains in its C terminus a short, conserved domain called the TRP box, which is necessary for channel gating. Substitution of two TRP box residues-I696 and W697-with Ala markedly affects TRPV1's response to all activating stimuli, which indicates that these two residues play a crucial role in channel gating. We systematically replaced I696 and W697 with 18 native l-amino acids (excluding cysteine) and evaluated the effect on voltage- and capsaicin-dependent gating. Mutation of I696 decreased channel activation by either voltage or capsaicin; furthermore, gating was only observed with substitution of hydrophobic amino acids. Substitution of W697 with any of the 18 amino acids abolished gating in response to depolarization alone, shifting the threshold to unreachable voltages, but not capsaicin-mediated gating. Moreover, vanilloid-activated responses of W697X mutants showed voltage-dependent gating along with a strong voltage-independent component. Analysis of the data using an allosteric model of activation indicates that mutation of I696 and W697 primarily affects the allosteric coupling constants of the ligand and voltage sensors to the channel pore. Together, our findings substantiate the notion that inter- and/or intrasubunit interactions at the level of the TRP box are critical for efficient coupling of stimulus sensing and gate opening. Perturbation of these interactions markedly reduces the efficacy and potency of the activating stimuli. Furthermore, our results identify these interactions as potential sites for pharmacological intervention.
منابع مشابه
Identification of molecular determinants of channel gating in the transient receptor potential box of vanilloid receptor I.
Transient receptor potential vanilloid receptor subtype I (TRPV1) is an ion channel gated by physical and chemical stimuli that belongs to the TRPV protein family. TRPV receptors contain a highly conserved, 6-mer segment near the channel gate, known as the TRP box, whose function remains unknown. Here, we performed an alanine scanning mutagenesis of the TRP box of TRPV1 (IWKLQR) and found that ...
متن کاملCamphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism.
Camphor is a naturally occurring compound that is used as a major active ingredient of balms and liniments supplied as topical analgesics. Despite its long history of common medical use, the underlying molecular mechanism of camphor action is not understood. Capsaicin and menthol, two other topically applied agents widely used for similar purposes, are known to excite and desensitize sensory ne...
متن کاملInteraction Between the Cannabinoid and Vanilloid Systems on Anxiety in Male Rats
Introduction: Previous studies have shown that the cannabinoid system is involved in anxiety.In addition, transient receptor potential vanilloid type-1 (TRPV1) channels are new targets for the development of anxiolytics. The present study investigated the possible interaction between the cannabinoid and vanilloid systems on anxiety-like behavior in rats. Methods: Four different groups of male ...
متن کاملTRP ion channels in the nervous system.
The transient receptor potential (TRP) superfamily comprises a group of non-selective cation channels that sense and respond to changes in their local environments. TRP channels are found in many eukaryotes, from yeast to mammals. They are a diverse group of proteins organized into six families: classical (TRPC), vanilloid (TRPV), melastatin (TRPM), muclopins (TRPML), polycystin (TRPP), and ANK...
متن کاملL596-W733 bond between the start of the S4-S5 linker and the TRP box stabilizes the closed state of TRPV4 channel.
Unlike other cation channels, each subunit of most transient receptor potential (TRP) channels has an additional TRP-domain helix with an invariant tryptophan immediately trailing the gate-bearing S6. Recent cryo-electron microscopy of TRP vanilloid subfamily, member 1 structures revealed that this domain is a five-turn amphipathic helix, and the invariant tryptophan forms a bond with the begin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 143 شماره
صفحات -
تاریخ انتشار 2014